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Gravitational and Electroweak Interactions
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SchroÈ dinger considered the variational principle d * ! 2 g d 4x 5 0, where g is
the determinant of the metric g m n , but noted that if g m n is varied, the resulting
Euler±Lagrange equations cannot serve as field equations. We write g m n 5
gij h

i
m h j

n , where gij 5 diag( 2 1, 1, 1, 1), and express the vectors of the tetrad hi
m

as derivatives of nonintegrable functions x i of the type commonly used for phase
factors in gauge theory, i.e., hi

m 5 x i
, m . We have previously shown that if the x i

are varied, the resulting Euler±Lagrange equations serve as field equations which
imply the validity of Einstein equations with a stress-energy tensor for the
electroweak field and associated currents. In this paper, we express these Einstein
equations into two new forms, and use these forms to derive Lorentz-force-like
equations of motion. The electroweak field appears as a consequence of the field
equations (rather than as a ª compensating fieldº introduced to secure local gauge
invariance). There is no need for symmetry breaking to accommodate mass,
because the gauge symmetry is approximate from the outset.

1. INTRODUCTION

SchroÈ dinger (1960) recognized that the simplest general relativistic vari-

ational principle which exists is

d # ! 2 g d 4x 5 0 (1)

where g is the determinant of the metric g m n . He noted, however, that variation
of g m n yields the Euler±Lagrange equations ! 2 g g m n 5 0, which cannot

serve as field equations. Lowercase indices take the values 0, 1, 2, 3, and the

summation convention is adopted. Any space-time metric may be expressed in

terms of a tetrad of vectors h i
m , i.e., g m n 5 gijh

i
m h j

n , where gij 5 g ij 5
diag( 2 1, 1, 1, 1). We use g ij and gij to raise and lower tetrad (Latin) indices,

1 Department of Mathematics and Computer Science, North Georgia College and State Univer-
sity, Dahlonega, Georgia 30597.

827

0020-7748/98/0300-82 7$15.00/0 q 1998 Plenum Publishing Corporation



828 Pandres

just as we use g m n and g m n to raise and lower space-time (Greek) indices,

e.g., hi m 5 gij h
j
m .

We now recall (Pandres, 1995) the step that is crucial for the development
of our theory: We express the vectors of the tetrad as derivatives of ª noninteg-
rable functionsº x i, and vary the x i. [A nonintegrable function does not have

a definite numerical value at a point, but its derivatives have definite values

at a point. Such nonintegrable (path-dependent) functions have been used as

phase factors by Dirac (1978), Yang (1974), and many others in gauge theory.]

Any tetrad may be expressed in this way; thus, without loss of generality,
we may write h i

m 5 x i
, m , where a comma denotes partial differentiation.

The field equations that flow from equation (1) are (Pandres, 1995)

C m 5 0 (2)

where the vector C m is defined by

C m 5 hi
n (h i

m , n 2 h i
n , m ) (3)

(Note: The quantity h i
m , n 2 h i

n , m equals x i
, m , n 2 x i

, n , m , which would vanish

if the x i were ordinary functions; thus, our field equations would reduce to

trivial identities.) We show in Section 2 that these field equations imply the

validity of Einstein’ s equations for general relativity with a stress-energy

tensor which is just what one expects for a non-Abelian gauge field and its

associated currents. Evidence is presented that this gauge field is the electro-
weak field. Roughly speaking, transformations involving only the tetrad index

0 correspond to U(1), while those that mix the tetrad indices 1, 2, 3 correspond

to SU(2). The gauge field appears in the theory as a direct consequence of

the field equations, rather than being introduced as a ª compensating fieldº

to secure local gauge invariance (as in the standard development of gauge
theory). There is no need for symmetry breaking to accommodate mass,

because the gauge symmetry is approximate from the outset. We include a

discussion of the special case in which only gravitation and electromagnetism

are present. In Section 3, we derive Lorentz-force-like equations of motion

from the Einstein equations. In Section 4, we discuss an alternative theory

based on a different variational principle that yields different field equations,
which, however, imply the validity of Einstein equations that are identical

in form to those of Section 2, but slightly different in interpretation.

We have shown previously (Pandres, 1981) that

h i
m 5 d i

m 1 d i
0 d 2

m d 1
a x a (4)

is a solution to our field equations, and that this solution yields the well-

known (Synge, 1960) Einstein equations for an electrically charged dust

cloud. Synge showed that the equations of motion which are derived from
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these Einstein equations just state that electromagnetic current flows

according to the Lorentz force law.

The first suggestion that our theory describes the electroweak field as
well as the gravitational field can already be seen at this early stage of the

analysis. Equation (3) can obviously be written

C m 5 2 hi
n f i

m n (5)

where f i
m n is the curl of h i

m , i.e.,

f i
m n 5 h i

n , m 2 h i
m , n (6)

We define

F i
m n 5 h i

n , m 2 h i
m , n 1 e 0ijkhj m hk n (7)

where enijk is the usual Levi-Civita symbol. We note that Fi
m n is the usual

field strength for a U(1) 3 SU(2) gauge field, provided that h i
m is transformed

on its tetrad indices as a gauge potential, rather than as a Lorentz vector.

By using the antisymmetry of e0ijk in i and k, we easily find that hi
n e0ijkhj m hk n

5 0. From this and equation (7), we see that equation (5) may be written

C m 5 2 h n
i F

i
m n (8)

Thus, as we have noted previously (Pandres, 1995), the form of our field
equations is unchanged when the curl f i

m n is replaced by the gauge field
Fi

m n . It is clear that if h i
m is transformed on its tetrad indices as a gauge

potential, then the metric g m n 5 gij h
i
m h j

n is generally changed. It is eminently

reasonable that when a particle is subjected to a gauge transformation which
changes its mass, the gravitational field also should change.

1.1. Ricci Rotation Coefficients

We follow Eisenhart (1925) in defining Ricci rotation coefficients by

g i m n 5 hi m ; n , where a semicolon denotes the usual covariant derivative of
Riemannian geometry. The relation g m n i 5 h j

m g j n a hi
a illustrates our general

method for converting between Greek and Latin indices. It is well known

that g m n i is antisymmetric in m and n . This antisymmetry may be used to

obtain an expression for g m n i in terms of fi m n . We have fi m n 5 hi n , m 2 hi m , n 5 hi n ; m

2 hi m ; n , so that fi m n 5 g i n m 2 g i m n . If we subtract from this the corresponding

expressions for f m n i and f n i m , we obtain

g m n i 5 1±2 ( fi m n 2 f m n i 2 f n i m ) (9)

From equation (9), we find that g n
m n 5 f n

n m 5 hi
n (hi

m , n 2 hi
n , m ), i.e., that
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C m 5 g n
m n (10)

2. EINSTEIN EQUATIONS

The Einstein equations of general relativity may be interpreted in two

ways. One interpretation is as differential equations for the metric, when the

stress-energy tensor is given. Alternatively, these equations may be looked

upon as a definition of the stress-energy tensor in terms of the metric. The

second interpretation has been stressed particularly by SchroÈ dinger (1960)

(ª I would rather you did not regard these equations as field equations, but
as a definition of Tik the matter tensorº ) and by Eddington (1957) (ª and we

must proceed by inquiring first what experimental properties the physical

tensor possesses, and then seeking a geometrical tensor which possesses these

propertiesº ). It is the second interpretation that we adopt.

We define the Riemann curvature tensor in the usual way

R a
b m n 5 hi

a (h i
b ; m ; n 2 h i

b ; n ; m ) (11)

and define the Ricci tensor R m n , Ricci scalar R, and Einstein tensor G m n as

usual by R m n 5 R a
m a n , R 5 R a

a , and G m n 5 R m n 2 1±2 g m n R, respectively. By using

hi
a hi

b ; m ; n 5 (hi
a hi

b ; m ); n 2 hi
a

; n h
i
b ; m 5 g a

b m ; n 1 g a
s n g s

b m

we find from equation (11) that

R a
b m n 5 g a

b m ; n 2 g a
b n ; m 1 g a

s n g s
b m 2 g a

s m g s
b n (12)

which is the Ricci identity for the Riemann tensor. From equation (12), we

obtain the following identity for the Ricci tensor:

R m n 5 C m ; n 2 C a g a
m n 2 g a

m n ; a 1 g a
s n g s

m a (13)

Our field equations just state that C m 5 0; thus, they imply that

R m n 5 2 g a
m n ; a 1 g a

s n g s
m a (14)

Now g a
m n ; a may be expressed in terms of the conserved current j i

m 5 f i
m

a
; a

which is the source of the field f i
m n . From equation (9), we easily obtain the

expression 2 g a
m n 5 1±2 ( f m n

a 1 f n m
a 1 f a

m n ). By using this, we write equation

(14) as

R m n 5 1±2 ( f m n
a

; a 1 f n m
a

; a 1 f a
m n ; a ) 1 g a

s n g s
m a (15)

Notice that

f m n
a

; a 5 (h i
m fi n

a ); a 5 h i
m ; a fi n

a 1 h i
m fi n

a
; a 5 g i

m a fi n
a 1 h i

m ji n

Also,
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g i
m a fi n

a 5 g i
m

a fi n a 5 g i
m

a ( g i a n 2 g i n a ) 5 g i a n g i
m

a 2 g i
m

a g i n a

5 g s
m

a g s a n 2 g a
m

i g a n i 5 2 g s
m

a g a s n 2 g a
m i g a n

i

5 2 g a
s n g s

m a 2 g a
m i g a n

i

By using these expressions for f m n
a

; a and g i
m a fi n

a in equation (15), we have

R m n 5 1±2 (hi
m ji n 1 hi

n ji m ) 2 g a
m i g a n

i 1 1±2 ( f a
m n ; a

1 g a
s n g s

m a 2 g a
s m g s

n a ) (16)

We now use the symmetry of R m n to rewrite equation (16) as

R m n 5 1±2 (hi
m ji n 1 hi

n ji m ) 2 g a
m i g a n

i (17)

We find from equation (17) that

R 5 hi a ji a 2 g a b i g a b i (18)

2.1. Einstein Equations (First Form)

From equations (17) and (18), we obtain the Einstein equations

G m n 5 1±2 (hi
m ji n 1 hi

n ji m 2 g m n h
i a ji a ) 2 g m n 1 1±4 g m n g a b i g a b i (19)

where

g m n 5 g a
m i g a n

i 2 1±4 g m n g a b i g a b i (20)

has the formal structure of a stress-energy tensor for a non-Abelian gauge

field. In equation (20), the formal role of the gauge field strength is played
by the Ricci rotation coefficient g m n i .

It is tempting to interpret the last term in equation (19) as a ª cosmologi-

calª term that might account for an expanding universe, or for the mysterious

ª dark matter.º Equation (18) shows that in a source-free region this last term

is just 2 1±4 g m n R.

The spin connection in general relativity is G m 5 1±8 g ij m ( g i g j 2 g j g i) 1
a m I, where the g i are the Dirac matrices of special relativity, I is the identity

matrix, and a m is an arbitrary vector. (A Lorentz transformation on tetrad

indices corresponds to a similarity transformation of the spinors.) Now, it is

well known that the spin connection contains complete information about the

electromagnetic field, and that one half of Maxwell’ s equations are identically

satisfied on account of the existence of the spin connection. Furthermore,
the manner in which the electromagnetic field enters the spin connection is

in agreement with the principle of minimal electromagnetic coupling. An

understanding of the spinor calculus in Riemann space, and the role played

by the spin connection, was gained through the work of many investigators
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during the decade after Dirac’ s discovery of the relativistic theory of the

electron; see, e.g., Bade and Jehle (1953) for a general review. Many of these

investigators recognized the description of the electromagnetic field as part
of the spin connection. An especially lucid discussion of this was given by

Loos (1963). The subsequent unification of the electromagnetic and weak

fields by Weinberg (1967) and Salam (1968) leads us to expect that the spin

connection might also contain a description of the weak field. In Section 3.1

we shall present evidence that the electroweak field is described by the

ª mixed symmetryº part of g m n i under the permutation group on three symbols.
First, however, we consider the special case in which only gravitation and

electromagnetism are present.

2.2. Einstein Equations for Gravitation and Electromagnetism

We recall (Pandres, 1981) that if f i
m n 5 0 for i 5 1, 2, 3, then

G m n 5 2 1±2 (h0
m j 0

n 1 h0
n j 0

m )

1 1±2 ( f 0 a
m f 0

a n 2 1±4 g m n f 0 a b f 0
a b ) 2 Rh0

m h0
n (21)

The orthodox physical interpretation, which we adopt, is that hi
m describes

an observer frame. Thus h0
m , which is the vector potential for f 0

m n , is also

the (timelike) velocity vector of an observer carrying a spatial frame described

by the triad hI
m , where capital Latin indices take the values 1, 2, 3. We denote

h0
m 5 v m , f 0

m n 5 f m n , and j 0
m 5 j m , so that equation (21) becomes

G m n 5 2 1±2 (v m j n 1 v n j m ) 1 1±2 E m n 2 Rv m v n (22)

where

E m n 5 f a
m f a n 2 1±4 g m n f a b f a b (23)

is the usual stress-energy tensor for the electromagnetic field, and j m is the

usual electromagnetic current.

2.3. The Electroweak Field

We now recall evidence (Pandres, 1995) that the electroweak field is

described by the mixed symmetry part of g m n i under the permutation group

on three symbols. This group has six group elements. One group element is

the identity. The other five group elements are ª cyclesº such as ( m n i), which

has the effect of replacing m with n , n with i, and i with m . These five group
elements are ( m n ), ( n i), (i m ), ( m i n ), and ( m n i). The Ricci rotation coefficients

may be decomposed into their totally antisymmetric and mixed symmetry

parts. (The totally symmetric part vanishes because the coefficients are anti-

symmetric in their first two indices.) The totally antisymmetric part of g m n i is
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A m n i 5 1±3 ( g m n i 1 g i m n 1 g n i m ) (24)

The mixed symmetry part of g m n i is the quantity

M m n i 5 g m n i 2 A m n i 5 1±3 (2 g m n i 2 g i m n 2 g n i m ) (25)

which is antisymmetric in m and n . Thus, we have

g m n i 5 A m n i 1 M m n i (26)

and we see from equations (10) and (26) that

C m 5 M m
m n (27)

It follows from equation (25) that

M m n i 1 M i m n 1 M n i m 5 0 (28)

We note that M m n i may be expressed in terms of fi m n . From equations (25)

and (9) we find that

M m n i 5 1±3 (2fi m n 2 f m n i 2 f n i m ) 5 2±3 g m n i 1 1±3 fi m n (29)

and this may be written

M m n i 5 1±3 (2 d n
i d a

m d s
n 2 hn

m d a
n h s

i 2 hn
n hi

a d s
m )fn a s (30)

Upon using equations (6) and (7) in equation (30), we obtain

M m n i 5 1±3 (2 d n
i d a

m d s
n 2 hn

m d a
n h s

i 2 hn
n hi

a d s
m )(Fn a s 2 e0

n
jkhj a hk s ) (31)

It is easily verified that

(2 d n
i d a

m d s
n 2 hn

m d a
n hi

s 2 hn
n hi

a d s
m )e0

n
jkhj a hk s 5 0

Therefore, equation (31) reduces to

M m n i 5 1±3 (2 d n
i d a

m d s
n 2 hn

m d a
n h s

i 2 hn
n h

a
i d s

m )Fn a s (32)

From equation (32), we see that in the expression (30) for M m n i the curl fi m n

may simply be replaced by the gauge field Fi m n [just as in the expression

(5) for C m ]. We shall see that the quantity Fi m n does not directly describe the

electroweak field. It is, however, the fundamental ingredient which is essential
for the description of that field. Indeed, Fn a s in (32) may be viewed as a

field with ª bareº or massless quanta, which are ª clothedº by the factor
1±3 (2 d n

i d a
m d s

n 2 hn
m d a

n h
s
i 2 hn

n hi
a

d
s
m ), and thus may acquire mass. It is M m n i that

we tentatively identify as the physical electroweak field.

2.3.1. Affine Connection for Quantities with Tetrad Indices

We shall see that it is useful to regard the negative of Ai
j n as an affine

connection for ª totalº covariant differentiation of quantities with tetrad indi-
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ces. We use a stroke | to denote the total covariant derivative. Thus, for the

total covariant derivatives of hi
m and hi m , we have

hi
m | n 5 hi

m ; n 2 h j
m Ai

j n 5 M i
m n (33)

hi m | n 5 hi m ; n 1 hj m A j
i n 5 M i m n

For a quantity that has only space-time indices, there is no distinction between
ª ordinaryº and ª totalº covariant differentiation.

It is important to observe from (28) and (33) that M m n i is just the total

curl of hi m , i.e.,

M m n i 5 hi n | m 2 hi m | n (34)

This observation gives us further encouragement to identify M m n i tentatively

as the electroweak field. For this identification to be valid, the quantity

M m n 0 5 1±3 (2f0 m n 2 f m n 0 2 f n 0 m ) (35)

must describe the electromagnetic field. The presence of the extra terms

2 f m n 0 2 f n 0 m in equation (35) may lead one to ask how M m n i can be identified

as the electroweak field. Our answer is this: If hi
m describes a freely falling,

nonrotating observer frame, then equation (35) reduces to M m n 0 5 1±3 f0 m n . This
may be seen as follows. The vector field h0

m is tangent to, and therefore

defines, a timelike congruence of curves. These are the world lines of an

observer with velocity h0
m carrying a spatial frame described by hI

m . To obtain

an hi
m that describes a freely falling, nonrotating frame, we choose h0

m tangent

to a timelike geodesic congruence, and carry hI
m along the geodesics by

parallel transport [to which Fermi±Walker transport reduces (Synge, 1960)

along nonnull geodesics]. Thus, the condition for freely falling, nonrotating

frames is hi n ; a h0
a 5 0. In terms of the Ricci rotation coefficients, the condition

is g m n 0 5 0. From this and equation (25), we see that for an hi
m which

describes a freely falling, nonrotating observer frame,

M m n 0 5 1±3 ( g 0 n m 2 g 0 m n ) 5 1±3 (h0 n ; m 2 h0 m ; n ) 5 1±3 (h0 n , m 2 h0 m , n ) 5 1±3 f0 m n

2.3.2. Total Einstein Equations

We now recall (Pandres, 1995) more compelling evidence that M m n i

describes the electroweak field. We define a total Riemann tensor

R a
b m n 5 hi

a (hi
b | m | n 2 hi

b | n | m ) (36)

which is the total analogue of the usual Riemann tensor R a
b m n . We define a

total Ricci tensor by R m n 5 R a
m a n , a total Ricci scalar by R 5 R a

a , and a

total Einstein tensor by G m n 5 R m n 2 1±2 g m n R. We have shown (Pandres,

1995) that an identity for the total Einstein tensor is
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G m n 5 C m | n 2 C a M a
m n 2 g m n C

a
| a 2 1±2 g m n C

a C a

1 I m i h
i
n 2 (M a

m iM a n
i 2 1±4 g m n M a b iM a b i) (37)

where I m i 5 M m
a

i | a is the total gauge current. It is not generally conserved.

We see from (37) that our field equations C m 5 0 imply the validity of the
total Einstein equations

G m n 5 I m ih
i
n 2 (M a

m i M a n
i 2 1±4 g m n M a b iM a b i) (38)

By contrast with the conventional Einstein tensor G m n , our total Einstein

tensor G m n is nonsymmetric. We denote its symmetric part by G m n . The

symmetric part of equation (38) is

G m n 5 1±2 (I m ih
i
n 1 I n ih

i
m ) 2 (M a

m i M a n
i 2 1±4 g m n M a b iM a b i) (39)

The right side of equation (39) is just what one expects for the stress-energy
tensor of a non-Abelian gauge field and associated currents.

One may ask whether tetrad indices can be associated with intrinsic

spin and also with weak isotopic spin. The possibility of transforming hi
m

either as a Lorentz vector or as a gauge potential suggests that the answer

is ª yes.º However, if this answer should turn out to be untenable, then (in
a worse-case scenario) we could retain the results given here, but use a space-

time with dimension greater than four.

Our theory provides a complete unification of the gravitational, electro-

magnetic, and weak fields. By contrast, it is widely recognized that the

electroweak theory of Weinberg and Salam provides only a partial unification

of the electromagnetic and weak fields. Crease and Mann (1986) note that
ª The electroweak theory, as it is called today, does not fully unify the two

forces. Nevertheless, it ties them together so firmly that most scientists refer

to it as unified.º Moriyasu (1983) notes that Weinberg and Salam ª began

with a product of disconnected groups U(1) and SU(2), and ended up by

unifying them through a mixing of the corresponding gauge fields. The reason

for the mixing, of course, has nothing to do with gauge theory per se. It was
built in `by hand’ through the identification of the leptons as the appropriate

doublets and singlets of weak isotopic-spin.º Like Weinberg±Salam theory,

our theory in its present form provides no fundamental explanation for the

left±right asymmetry of the weak interactions. However, we mention a possi-

ble avenue to such an explanation. In five prior papers (Pandres, 1962, 1981,

1984a,b, 1995) we have pursued Einstein’ s suggestion that the diffeomorph-
isms be extended to a larger group. This has led to a geometry based not

upon a manifold, but on a space in which paths, rather than points are the

primary elements. In this geometry, x i and x m are on the same footing, but

partial derivatives of hi
m with respect to x a and x b do not generally commute.
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This lack of commutativity corresponds to something like a ª vorticityº of

space-time that might provide a fundamental explanation for the left±right

asymmetry of the weak interactions. It also appears possible that the path
space could provide a fundamental foundation for string theory. The need

for such a foundation has been emphasized especially by Witten (1988).

Equation (39) is not convenient for the purpose of deriving equations

of motion, because G m n
; m does not vanish. There is, however, another form

of the Einstein equations which, like equation (19), is convenient for this

purpose.

2.4. Einstein Equations (Second Form)

We note that

g a
m n ; a 5 ( g a

m ih
i
n ); a 5 g a

m i; a hi
n 1 g a

m ih
i
n ; a

5 2 g m
a

i; a hi
n 1 g a

m i g i
n a 5 2 J m ih

i
n 1 g s

m a g a
n s

where J m i 5 g m
a

i; a is the conserved current which the source of the field
g m n i . Using this expression for g a

m n ; a , and the relation g a
s n 2 g a

n s 5 f a
n s ,

in equation (14) gives

R m n 5 J m ih
i
n 2 g a

m i f
i
a n (40)

Upon multiplying equation (14) by g m n , we obtain

R 5 2 g a b
b ; a 1 g s b a g a s b 5 C a

; a 1 g s b a g a s b

5 1±2 ( g s b a g a s b 1 g s b a g a s b ) 5 1±2 ( g s b a g a s b 1 g b s a g a b s )

5 1±2 ( g s b a g a s b 2 g s b a g a b s ) 5 1±2 g s b a ( g a s b 2 g a b s )

5 1±2 g s b a f a b s 5 2 1±2 g b s a f a b s 5 2 1±2 g a b ifi a b

From this expression for R and equation (40), we have

G m n 5 J m ih
i
n 2 g a

m i f
i
a n 1 1±4 g m n g a b ifi a b (41)

We now use the symmetry of G m n to obtain

G m n 5 1±2 (J m ih
i
n 1 J n ih

i
m ) 2 B m n (42)

where

B m n 5 1±2 ( g a
m i f

i
a n 1 g a

n i f
i
a m ) 2 1±4 g m n g a b ifi a b (43)

Next, we define
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M m n 5 M a
m i M a n

i 2 1±4 g m n M a b iM a b i (44)

P m n 5 P a
m i P a n

i 2 1±4 g m n P a b iP a b i

where

P m n i 5 2±3 g m n i 2 1±3 fi m n (45)

From equations (29) and (45), it is easily verified that 9±8 (M m n 2 P m n ) 5 B m n .

Thus, we have

G m n 5 1±2 (J m ih
i
n 1 J n ih

i
m ) 1 9±8 (P m n 2 M m n ) (46)

3. EQUATIONS OF MOTION

We now consider the general equations of motion that are derived from

our Einstein equations. Let 7 m n be any tensor of the form

7 m n 5 F a
m F a n 2 1±4 g m n F a b F a b (47)

where F m n is any antisymmetric tensor. A straightforward calculation

shows that

7 m n
; m 5 F m a

; a F m n 1 FÄ m a
; a FÄ m n (48)

where FÄ m n is the dual of F m n , defined in the usual way; see, e.g., Weber

(1961). (The conserved current FÄ m n
; n vanishes if F m n is the curl of a vector.)

3.1. Equations of Motion (First Form)

By using the fact that G m n
; m 5 0, we find from equation (19) that

hi m ji n ; m 1 j i m g i m n 2 (h i m ji m ); n 2 2 g m n
; m 1 1±2 ( g a b i g a b i), n (49)

Notice that

(h i m ji m ); n 5 h i m
; n ji m 1 h i m ji m ; n 5 j i m g i m n 1 h i m ji m ; n

Upon using this and the relation fi m n 5 g i n m 2 g i m n in equation (49), we get

h i m ( ji n ; m 2 ji m ; n ) 1 j i m fi m n 2 2 g m n
; m 1 1±2 ( g a b i g a b i), n 5 0 (50)

From equation (48), we easily see that

g m n
; m 5 g m a i

; a g m n i 1 g Ä m a i
; a g Ä m n i 5 J m i g m n i 1 JÄ m i g Ä m n i

where J m i 5 g m n i
; n and JÄ m i 5 g Ä m n i

; n are the conserved currents that are sources

of the fields g m n i and g Ä m n i, respectively. By using this expression for g m n
; m in

equation (50), we obtain the equations of motion
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h i m v i m n 1 j i m fi m n 2 2 J m i g m n i 2 2 JÄ m i g Ä m n i 1 1±2 ( g a b i g a b i), n 5 0 (51)

where v i m n 5 ji n , m 2 ji m , n . The last term in equation (51) is present because

of the ª cosmologicalº term in equation (19). All other terms are ª Lorentz-
force-like.º The first acts upon the tetrad itself (the observer frame). The

others act upon the currents j i m , J m i, and JÄ m i.

3.2. Equations of Motion (Second Form)

We obtain a simple form for the equations of motion from equation

(46). If we multiply equation (46) by g m n , we find that J a ih
i a 1 R 5 0. Thus,

by subtracting 1±2 g m n (J a ih
i a 1 R) from the right side of equation (46), we get

G m n 5 1±2 (J m ih
i
n 1 J n ih

i
m 2 g m n J a ih

i a ) 1 9±8 (P m n 2 M m n ) 2 1±2 g m n R (52)

By using G m n
; n 5 0, we find from equation (52) that

hi m (J n i; m 2 J m i; n ) 1 J m ifi m n 1 9±4 (P m n
; m 2 M m n

; m ) 2 R, n 5 0 (53)

The analysis which leads from equation (52) to equation (53) is analogous

to that which led from equation (19) to equation (50). From equation (48),

we see that

P m n
; m 2 M m n

; m 5 p m iP m n i 1 pÄ m iPÄ m n i 2 m m iM m n i 2 mÄ m iMÄ m n i (54)

where p m i 5 P m n i
; n , pÄ m i 5 PÄ m n i

; n , m m i 5 M m n i
; n , and mÄ m i 5 MÄ m n i

; n . Now, it is

clear from equations (29) and (45) that M m n i 2 P m n i 5 2±3 fi m n . But, fÄ i m n
; n vanishes

because fi m n is the curl of a vector. Thus, MÄ m n i
; n 5 PÄ m n i

; n 5 2±3 g Ä m n i
; n . In this

way, we see that mÄ m i 5 pÄ m i 5 2±3 JÄ m i, so that equation (53) may be written

h i m (J n i; m 2 J m i; n ) 1 J m ifi m n 1 9±4 (p m iP m n i 2 m m iM m n i) 2 JÄ m ifÄi m n (55)

2 R , n 5 0

From equations (29) and (45),

p m iP m n i 2 m m iM m n i 5 2 4±9 (J m ifi m n 1 j i m g m n i)

so equation (55) becomes

h i m V m n i 2 j i m g m n i 2 JÄ m ifÄi m n 2 R, n 5 0 (56)

where V m n i 5 J n i, m 2 J m i, n . As in equation (51), the last term in equation

(56) is cosmological, and all others are Lorentz-force-like.

4. AN ALTERNATIVE THEORY

We previously (Pandres, 1981, 1984a,b) considered the variational

principle
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d # C m C m ! 2 g d 4 x 5 0 (57)

where h i
m is varied. This yields field equations which just state that the

quantity Ci 5 C m hi
m is constant and lightlike. These field equations, in turn,

imply the validity of Einstein equations that are identical in form to those

which are implied by C m 5 0. The equations of motion that are derived from

these Einstein equations differ from equations (51) and (56) through the

presence of a term which vanishes if C m 5 0.
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